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Using the notion of topological entropy for non-compact sets we prove that for
a C1+a-map with a finite Markov partition the corresponding coding map pre-
serves topological entropy of subsets. We also provide an example of a piecewise
linear conformal repeller with a Markov coding decreasing topological entropy.
These results are generalized to the notions of u-dimensions.
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1. INTRODUCTION

One of the most important questions in dynamical system theory is to
understand the different types of qualitative behavior of the trajectories.
This question is by far to complex for a complete solution. A common
attempt is to restrict the studies to a given class of systems. For example
the classes of Axiom A systems or of conformal repellers carry sufficient
structure to lead to deep results. In particular one can understand the
structure of a certain class of invariant measures, called Gibbs states. In
these investigations it turned out to be useful to associate to each invariant
set or invariant measure some particular characteristics. Among the char-
acteristics which deeply reflect the dynamical behavior of the system are the
notion of the Hausdorff dimension and the topological/metric entropy. In
general it is quite complicated to determine the value of these quantities.
But in the cases of Axiom A systems or conformal repellers the situation is
much better (see ref. 10).

For these classes one often uses Markov partitions to encode the
system. The coding space is a symbolic dynamical system and several useful



tools from symbolic dynamics can be exploited. The thermodynamic for-
malism is one of the most fruitful tools to obtain results in this direction. It
is used to prove the existence of Gibbs states (see, for example, ref. 7) and
to derive their multifractal properties (see, for example, refs. 10, 12, 15, 2,
and 3). The multifractal analysis presents an entire family of dimensionlike
or entropylike characteristics which are linked to the systems as the whole.
This means that the multifractal properties of a given Gibbs state also
carry information about trajectories which are atypical with respect to this
measure. For this reason they are of great interest in studying such systems.
Since the multifractal analysis incooperates information about atypical
points it is more subtle than the standard thermodynamic formalism. In
particular one cannot neglect sets of measure zero. This makes it necessary
to understand the Markov coding in a delicate way.

One of the problems of applying the coding method is that the coding
map is in general not one-to-one. In particular, it is not obvious that sets of
positive measure are mapped to sets of positive measure and that the values
of dimensionlike characteristics are preserved. The same problem occurs if
one deals with entropy. To understand the structure of the Gibbs states it is
sufficient to establish the fact that the boundary of the Markov partition
(see ref. 7) has zero measure for any Gibbs state. This justifies the projec-
tion of the measure from the coding space to the smooth system since the
coding is one-to-one on a set of full measure. But if one is interested in
dimensionlike notions one needs to understand the influence of the
boundary of the partition elements, especially if one deals with atypical
points. In ref. 1 Ashley et al. showed that in general the boundaries of the
Markov partition elements can carry large entropy. This leaves the possi-
bility that the coding looses information on large sets.

Evidently these questions arise immediately when one has to deal with
other measures than Gibbs states. For example the analysis of the dimen-
sion of a non-invariant measure was used in refs. 4 and 5 to get a hand on
the dimension of irregular trajectories.

Another conceptual problem arises when we want to define the topo-
logical entropy for arbitrary subsets of an invertible systems (see discussion
in Section 2.3 and properties in ref. 14). There are many ways to introduce
the topological entropy and these notions exhibit interesting properties for
non-compact, non-invariant sets. In particular they may differ on those
sets. Again it is important to control the behavior of these notions under
the Markov coding.

In refs. 5 and 14 a unifying notion of dimensionlike and entropylike
characteristics was introduced. This notion of u-dimensions unifies the
concepts of topological entropy and Hausdorff dimension for conformal
mappings and Axiom A systems. Here u is a function which essentially
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expresses the diameter of a cylinder set in terms of its length. The geometric
structure is encoded by the coding map and the function u. In this paper we
will use this unified approach to obtain results for a whole class of charac-
teristics at once.

We will show that quite general notions of dimension and topological
entropy are preserved under the coding map. The concepts and the proofs
differ in some technical points for invertible and non-invertible systems.
For this reason we expose these two cases separately.

Our main concept is to find Markov partitions whose elements have a
comparable diameter with respect to the metric given by u. This is a gener-
alization of the concept of a Moran cover introduced by Pesin and Weiss
(ref. 12, see also ref. 10). We prove that these special partitions have a finite
multiplicity independent of the diameter of the elements. This will imply
that we can find codings with arbitrary small elements where the number of
points with the same coding up to a given finite time is uniformly bounded.
This ensures the preservation of the u-dimension.

2. AXIOM A BASIC SETS

2.1. Markov Coding

Let f: M Q M be a C1+a diffeomorphism (a > 0) of a smooth compact
finite dimensional Riemannian manifold without boundary, and L … M a
compact locally maximal hyperbolic set for f. Those sets are also called
Axiom A bassic sets. Then, there is a continuous splitting of the tangent
bundle TLM=E s À Eu, and constants C > 0 and l ¥ (0, 1) such that for
each x ¥ L:

(A1) dxfE s
x=E s

fx and dxfEu
x=Eu

fx;
(A2) ||dxfnv|| [ Cln ||v|| for all v ¥ E s

x and n \ 0;
(A3) ||dxf −nv|| [ Cln ||v|| for all v ¥ Eu

x and n \ 0.

For each point x ¥ L there exist local stable and unstable manifolds W s(x)
and Wu(x), with TxW s(x)=E s

x and TxWu(x)=Eu
x . Moreover, there exists

d > 0 such that for all x, y ¥ L with r(x, y) < d, the set W s(x) 5 Wu(y)
consists of a single point, which we denote by [x, y], and the map

[ · , · ]: {(x, y) ¥ L×L : r(x, y) < d} Q L

is continuous.
We may assume that f|L is topological mixing by replacing f with fn,

for some n ¥N.
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A rectangle R is a nonempty closed set with diam R [ d, R=int R,
and [x, y] ¥ R whenever x, y ¥ R. The latter means that there is a Hölder
continuous homeomorphism

h: R Q R 5 W s(x)×R 5 Wu(x) (1)

for x ¥ R.
A finite cover R={R1,..., Rl} by rectangles is called a Markov parti-

tion for L if

(MP1) int Ri 5 int Rj=” for i ] j
(MP2) For x ¥ int Ri 5 f −1(int Rj) we have

f(W s(x) 5 Ri) … W s(f(x)) 5 Rj

f(Wu(x) 5 Ri) ‡ Wu(f(x)) 5 Rj.

Locally maximal hyperbolic sets have Markov partitions of arbitrarily
small diameter. Each Markov partition has associated a two-sided subshift
of finite type s|SA with transition matrix A, and a coding map q: SA Q L for
the hyperbolic set, which is Hölder continuous, onto, and satisfies f p q=
q p s and sup{card(q −1x): x ¥ L} <. (see, for example, ref. 9 for details).
Let Ri−m · · · in=4n

k=−m f −kRik then q( · · · i−m · · · in · · · )=4n, m \ 0 Ri−m · · · in. We
denote the set of all those nonempty sets Ri−m · · · in by Rn

m .
We say that an element R of Rn

m has length m(R) :=n+m+1.
For each point i=( · · · i−1i0i1 · · · ) ¥ SA, and each nonnegative integers

n, m, we define the cylinder set Cn
m(i−m · · · in)=Cn

m(i) as the set of points

{( · · · j−1 j0 j1 · · · ) ¥ SA : jk=ik for i=−m,..., n}.

Then q(Cn
m(i−m · · · in))=Ri−m · · · in. We say that the above cylinder set has

length n+m+1.
We define the stable boundary of RI by “ sRi :={x ¥ Ri : x ¨

int Wu(x) 5 Ri}, the unstable boundary of Ri by “uRi :={x ¥ Ri : x ¨

int W s(x) 5 Ri} and the total boundary of Ri by “Ri=“ sRi 2 “uRi. We
also use the notations “R :=11 [ k [ l “Rl, “ sR :=11 [ k [ l “

sRl and “uR :=
11 [ k [ l “

uRl. In this notation and f(“ sR) … “ sR and “uR … f(“uR) (see
ref. 9 for details).

We denote by ind Ri−m · · · in the number of rectangles RiŒ−m · · · iŒn which have
nonempty intersection with Ri−m · · · in. We note that different rectangles of the
form Rj−m · · · jn intersect only at their boundaries. We call the number

ind R :=sup{ind Ri−m · · · in: n, m \ 0 i ¥ SA}

the index of the Markov partition.
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Let ū=(u s, uu): LQ R2 be a Hölder continuous function with u s(x),
uu(x) > 0 for all x ¥ L. Given r̄=(r s, ru) > (0, 0), x ¥ L we define a pair of
numbers n̄=n̄(x)=(n s(x), nu(x)) by

n i(x, r̄)=max 3k ¥N : C
k

j=0
u i(fy(i) j(x)) [

1
r i
4 i=s, u

where y(s) :=−1 and y(u)=1. Let

Rū, r̄={Ri−ns(x, r̄ ) · · · inu(x, r̄ ): x ¥ Ri−ns(x, r̄ ) · · · inu(x, r̄ )}.

Given a rectangle R i ¥Rū, r̄ we call a rectangle R j ¥Rū, r̄ a ū, r̄-neighbor of
R i iff R i 5 R j ]”. We define

indū, r̄ Rū, r̄=max
R ¥Rū, r̄

card{R j ¥Rū, r̄ : R j is a ū, r̄-neighbor of R}.

The ū-index of the Markov partition is defined as

indū R := sup
r̄ ¥ R

+×R
+

{indū, r̄ Rū, r̄}.

2.2. u-Dimensions

Let ū=(u s, uu): LQ R2bea strictly positiveHölder continuous function.
For each nonempty set Ri−m · · · in ¥Rn

m , we write

uu(Ri−m · · · in)=sup 3 C
n

k=0
uu(fkx): x ¥ Ri−m · · · in

4

and

u s(Ri−m · · · in)=sup 3 C
n

k=0
u s(f −kx): x ¥ Ri−m · · · in

4 .

For each set Z … L and each real number d, we define

M(Z, d, ū, R)=lim
rQ 0

inf
Cr

C
R ¥ Cr

exp(−duu(R))−du s(R)), (2)

where the infimum is taken over all finite or countable collections
Cr …1t [ r R(us, uu), (t, t) that cover Z.

By a slight modification of the construction of Carathéodory dimen-
sion characteristics (see ref. 5 or ref. 10), when d goes from −. to +.,
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the quantity in Eq. (2) jumps from +. to 0 at a unique critical value.
Hence, we can define the number

dimū Z=inf{d: M(Z, d, ū, R)=0}

=sup{d: M(Z, d, ū, R)=+.}.

This number is called the ū-dimension w.r.t. R of the set Z. It can be shown
that in the case of an Axiom A basic set this number does not depend on
the choice of the Markov partition (its value is the same for any generating
partition, see ref. 5 or ref. 10 for details).

Remark 2.1. If ū=(− log a s, log au) where a s and au are the norms
of the derivative along the stable and unstable direction, respectively, of a
hyperbolic horseshoe in a two-dimensional manifold, then the number
dimū Z coincides with dimH Z (see ref. 5 or ref. 10).

2.3. Topological Entropy for Non-Compact Sets

The notion of topological entropy for non-compact sets was intro-
duced by Bowen in ref. 6. Later it was considered by Pesin and Pitskel’ in
ref. 11.

For invertible transformations, there is an asymmetry which occurs for
non-compact or non-invariant subsets of L. This asymmetry arises from
weighting the ‘‘future’’ and the ‘‘past’’ differently.

We propose a family of notions of topological entropy which weights
the ‘‘complexity’’ in the ‘‘future’’ and in the ‘‘past.’’

We consider a special case of the measure considered in Eq. (2). We
choose u s — 1/p and uu — 1/(1−p), where 0 < p < 1.

For every set Z … L, 0 < p < 1, and every real number d, we set

Np(Z, d, R)= lim
kQ.

inf
C
p
k

C
R ¥ C

p
k

exp(−dm(R)), (4)

where the infimum is taken over all finite or countable collections Cpk …
1j \ k R(1/p, 1/(1−p)), ( j−1, j−1) that cover Z and m(R) denotes the length of the
element R. Then this becomes a special case of (2) since m(R)=
u s(R)+uu(R). We note that the sets involved in the definition of the above
outer measure depend on ‘‘p percent’’ coordinates from the ‘‘future’’ and
‘‘1−p percent’’ coordinates from the ‘‘past’’. We want to remark that it is
also possible to include the cases p=0 and 1−p=0 into this family. In
these cases we consider only sets that have coordinates completely in the
‘‘past’’ or in the ‘‘future’’ (see ref. 14).
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The number

hp(f | Z)=inf{d: Np(Z, d, R)=0}=sup{d: Np(Z, d, R)=+.}

is called the p-weighted topological entropy of Z.
We also consider the quantity introduced in ref. 5 measuring the

minimal ‘‘complexity’’ of all ‘‘time directions.’’ We set

N*(Z, d, R)= lim
kQ.

inf
Cg
k

C
R ¥ Cg

k

exp(−dm(R)), (5)

where the infimum is taken over all finite or countable collections
Cg
k …1m+n > k R

n
m with n, m \ 0, that cover Z.

The number

hg(f | Z)=inf{d: N*(Z, d, R)=0}=sup{d: N*(Z, d, R)=+.}

is called the unweighted topological entropy of Z. It is not hard to show (see
ref. 5) that all the above definitions do not depend on the choice of the
Markov partition and that

hg(f | Z) [ min
0 [ p [ 1

hp(f | Z).

Moreover, if the set Z is compact and invariant all the above definitions
of entropy coincide with the classically defined topological entropies (see
ref. 10).

3. REPELLERS

In this section we present the modifications of the previous concepts to
the case of a non-invertible map.

3.1. Markov Coding for Repellers

Let f: M Q M be a C1+a map of a smooth manifold, and J an
f-invariant compact subset of M. We say that f is expanding on J and that
J is a repeller of f if there are constants C > 0 and b=l −1 > 1 such that
||dxfnu|| \ Cbn ||u|| for all x ¥ J, u ¥ TxM, and n \ 1. If in addition the
derivative of f is a scalar multiple of an isometry at any point of J we call
J a conformal repeller.

Since for expanding maps only the forward images are well-defined we
have to modify all definitions accordingly. A finite cover R={R1,..., Rl} is
called a Markov partition for the expanding repeller J if
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(MP1Œ) Ri=int Ri for 1 [ i [ l
(MP2Œ) int Ri 5 int Rj=” for i ] j
(MP3Œ) The image f(Ri) of any rectangle is the union of rectangles Rj.

It is well known that repellers admit Markov partitions of arbitrarily
small diameter. Again each Markov partition has associated a one-sided
subshift of finite type s|S+A , and a coding map q: S+A Q J for the repeller,
which is Hölder continuous, onto, and satisfies f p q=q p s and
sup{card(q −1x): x ¥ J} <. (see, for example, ref. 9 for details). Let
Ri0 · · · in={x ¥ M : fk(x) ¥ Rik for 0 [ k [ n} thenq(i0 · · · in · · · )=4n \ 0 Ri0 · · · in.
We denote the set of all those nonempty sets Ri0 · · · in by Rn.

We say that an element R of Rn has length m(R) :=n+1.
For each point i=(i0i1 · · · ) ¥ S

+
A , and each nonnegative integer n, we

define the cylinder set Cn(i0 · · · in)=Cn(i) as the set of points

{j0 j1 · · · ) ¥ SA : jk=ik for i=0,..., n}.

Then q(Cn(i0 · · · in))=Ri0 · · · in. We say that the above cylinder set has length
n+1.

In view of property (MP3Œ) all the images fn(“Ri) are contained in the
boundary 1 l

k=1 “Rk.
Let Ri0 · · · in, n \ 1 be defined as above. We denote by ind Ri0 · · · in the

number of rectangles RiŒ0 · · · iŒn which have nonempty intersection with Ri0 · · · in.
We note that different rectangles of the form Rj0 · · · jn intersect only at their
boundaries. As in the case of diffeomorphisms we call the number
ind R :=sup{ind Ri0 · · · in: n \ 1 i ¥ S+A } the index of the Markov partition.

Let u: J Q R be a positive Hölder continuous function. Given r > 0,
x ¥ J we define a number n(x) by

n(x)=max 3k ¥N : C
k

j=0
u(f j(x)) [

1
r
4 .

Let

Ru, r={Ri0 · · · in(x, r ): x ¥ Ri0 · · · in(x, r )}.

Given a rectangle R i ¥Ru, r we call a rectangle R j ¥Ru, r a u, r-neighbor of
R i iff R i 5 R j ]”. We define

indu, r Ru, r=max
R ¥Ru, r

card{R j ¥Ru, r : R j is a u, r-neighbor of R}.
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The u-index of the Markov partition is defined as

indu R :=sup
r ¥ R

+
{indu, r Ru, r}.

3.2. u-Dimensions for Repellers

Let u: J Q R2 be a strictly positive Hölder continuous function. For
each nonempty set Ri0 · · · in ¥Rn, we write

u(Ri0 · · · in)=sup 3 C
n

k=0
u(fkx): x ¥ Ri0 · · · in

4 .

For each set Z … J and each real number d, we define

M(Z, d, u, R)=lim
rQ 0

inf
Cr

C
R ¥ Cr

exp(−du(R)), (6)

where the infimum is taken over all finite or countable collections Cr …
1t [ r Ru, t that cover Z.

When d goes from −. to +., the quantity in Eq. (6) jumps from
+. to 0 at a unique critical value. Hence, we can define the number

dimu Z=inf{d: M(Z, d, u, R)=0}

=sup{d: M(Z, d, u, R)=+.}.

This number is called the u-dimension w.r.t. R of the set Z. This number
does not depend on the choice of the Markov partition (its value is the
same for any generating partition, see ref. 5 or ref. 10 for details).

Remark. If u=log a where a is the norm of the derivative of the
map f on a conformal repeller, then the number dimu Z coincides with
dimH Z (see ref. 5 or ref. 10). In the case of an expanding repeller the
u-dimension has a close relation to the topological entropy (see Section 3.3).

3.3. Topological Entropy for Repellers

As in the previous sections concerning expanding repellers we can
make the appropriate modifications of the concept of topological entropy
for invertible transformations. However in the situation of an expanding
repeller there is a simpler equivalent way to introduce the definition of the
topological entropy for non-compact sets.
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Let Z … J be a subset. We set u0 — 1 and define the topological entropy
of Z to be the number h(f | Z) :=dimu0 Z.

We note that in the case of a non-invertible transformation we have
only one ‘‘time direction’’ and weighted entropies do not make sense.

4. SYMBOLIC SPACES

In the case of the symbolic dynamical system SA (invertible dynamics)
or S+A (non-invertible dynamics) we can define ū-dimensions (u-dimensions)
and topological entropies via an obvious modification of the definitions
in the previous sections. For this we consider the lifted function
ū p q: SA Q R2 (u p q: S+A Q R) and substitute the sets Ri−m · · · in by their lifts
Cn
m(i−m · · · in). We note that the lift of a Hölder continuous function is

Hölder (with possibly different exponent).

5. MAIN RESULTS

Let C+(L) be the space of positive continuous functions and Fh(L) the
space of positive Hölder continuous functions on L with Hölder exponent h.
We denote by FK

h (L) the family of functions in Fh(L)

{u ¥Fh(L) : |u(x)−u(y)| [ Kd(x, y)h for every x, y ¥ L}.

The spaces C+(J), Fh(J) and FK
h (J) are defined similarly.

Theorem 5.1. Let L be an Axiom A basic set for a C1+a diffeo-
morphism equipped with a Markov partition R. Then indū R: C(L)×
C(L) QN 2 {.} is uniformly bounded on each subspace FK

h (L)×FK
h (L).

Similarly,

Theorem 5.2. Let J be an expanding repeller for a C1+a map
equipped with a Markov partition R. Then indu R: C(J) QN 2 {.} is
uniformly bounded on each subspace FK

h (J).

Remark 5.3. In the case that a s and au are the norms of the deriva-
tives along the stable, respectively unstable, direction of a horseshoe in two
dimensions Pesin and Weiss (12) proved that

sup{ind R: r > 0 R ¥R(− log as, log au), (r, r)}=: M <..

They called this number M the Moran multiplicity of R.
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The Theorems 5.1 and 5.2 have the following corollary.

Corollary 5.4. Under the assumptions of Theorem 5.1 (5.2) the
map q: SA Q L (respectively, q: S+A Q J) preserves for any subset Z … SA
(repectively, Z … S+A ) its ū p q-dimension, ū ¥Fh(L)×Fh(L), (respectively,
u-dimension, u ¥Fh(J),) its p-weighted entropies, 0 [ p [ 1, and its
unweighted topological entropy.

6. A PIECEWISE SMOOTH COUNTEREXAMPLE

In this section we provide an example of a piecewise linear conformal
mapping which exhibits a finite Markov partition, but in contrary to the
smooth case the corresponding coding map decreases the topological
entropy of some subsets. In particular, the index of the Markov partition
with respect to the function u — 1 is ..

Fig. 1. Markov partition for a piecewise linear map.

Entropy Preservation Under Markov Coding 809



Let Q be the square [−1, 1]×[−1, 1]. We divide it into 10 squares
as indicated in the figure. Qi=[−2+i, −1+i]×[0, 1], i=1, 2; Qi=
[−2.5+i/2, −2+i/2]×[−0.5, 0], i=3, 4, 5, 6, and Qi=[−2.5+i/2,
−2+i/2]×[−1, −0.5]. We define a piecewise linear conformal map
f: Q Q Q by mapping each of the squares linear and conformal onto the
square Q: fi: Qi Q Q is defined as fi(x, y)=(2x+3−2i, 2y−1), i=1, 2;
fi(x, y)=(4x+9−2i, 4x+1), i=3, 4, 5, 6, and fi(x, y)=(4x+9−2i,
4x+3), i=7, 8, 9, 10. We note that there is an ambiguity on the joint
boundaries of the squares. Let J0 :={x ¥ Q : fn(x) ¥110

i=1 int Qi for all
n \ 0}. It is natural to call the closure J :=J0 the repeller for the mapping
f. It is not hard to see that J=Q and the partition {Q1,..., Q10} is a
Markov partition for J. We claim the following proposition.

Proposition 6.1. The coding map q does not preserve topological
entropies. In particular, the line L0 :=[−1, 1]×{0} has topological
entropy h(f, L0)=log 2 while its preimage has topological entropy
h(s, q −1(L0))=log 4.

Proof. The rectangle Qi0 · · · in :={x ¥ Q : fk(x) ¥ int Qik, 0 [ k [ n} has
nonempty intersection with L0 if and only if it belongs to one of the two
families A :={Qi0 · · · in: i0=1, 2; ik=7, 8, 9, 10, 1 [ k [ n} or B :={Qi0 · · · in:
i0=3, 4, 5, 6: ik=1, 2, 1 [ k [ n}. Let {Uj} be a cover of L0 consisting of
rectangles. By choosing an efficent cover we may assume that Uj 5 L0 ]”
for each j and the interiors of the rectangles Uj are mutually disjoint.
Hence, Uj ¥A 2B. From the properties of the rectangles in A and B it
follows that if {Uj} contains elements from A then an entire binary inter-
val of L0 is covered by elements from A––i.e., there is a Qi0 · · · in ¥B such
that L0 5 Qi0 · · · in ¥B is covered by elements Uj1, Uj2,... of A. But

C
k
exp(−am(Ujk)) \ exp(−a(n+1)) if a [ log 4.

Hence, it is more efficient to use covers with elements only in B. Then

C
j
exp(−am(Uj)) ˛ [

\
2mexp(−am) if ˛ a \ log 2

a [ log 2

where m=min m(Uj). Hence, the entropy of L0 is log 2.
The preimage of L0 under q is the set of sequences q −1(A) 2

q −1(B)={i ¥ S+A : i0=1, 2; ik=7, 8, 9, 10,1 [ k} 2 {i ¥ S+A : i0=3, 4, 5, 6;
ik=1, 2, 1 [ k}. This set has topological entropy log 4 since the map
g: s p q −1(A) Q {0, 1, 2, 3}N defined by (g(i))k=ik −7 is a topological
conjugacy. L
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7. PROOFS

7.1. Proof of Theorem 5.1

The proof has several steps. First we will prove that the number of
neighboring rectangles of the same length is bounded. This proof relies on
the volume lemma of Bowen and Ruelle.

Lemma 7.1. Let L be an Axiom A basic set of a C1+a diffeo-
morphism equipped with a Markov partition R. Then ind R is finite.

Proof. For x ¥ L, n, m \ 0 and r > 0 let Bn
m(x, r) :={z ¥ M :

fkz ¥ B(fkx, r) −m [ k [ n}. We will show the connection of these balls
to the elements of Rn

m .

Step 1: If R is a Markov partition then R(p) :=Jp
k=−p f −kR is a

Markov partition too. Moreover, the diameter of each element of R(p)
tends to zero if p grows. Also ind R [max{l4p+4, ind R(p)} since for each
pair n, m \ 0 there are at most l2p+2 rectangles in Rnp+k

mp+k , 0 [ k [ p. There-
fore, to prove the lemma, we may assume that the diameter of the Markov
partition is sufficiently small.

Step 2: Claim: If the rectangles of the Markov partition have suffi-
ciently small diameter, then there is a number r0 > 0 such that for all
rectangles Ri−m · · · in, m, n \ 0 there is a point x ¥ Ri−m · · · in with

min{max[ max
0 [ k [ n

d(fkx, “ sR), max
−m [ k [ 0

d(fkx, “uR)]} > r0.

We are going to prove the statement only for the stable boundary. Since
the rectangles are proper sets we can find an r −0 > 0 and points x1 ¥
R1,... xl ¥ Rl such that B(xi, r

−

0) 5 L … Ri; 1 [ i [ l. Moreover these balls
are mutually disjoint. Let xui ¥ “

sRi 5 Wu(x). Then d(xui , xk) \ r −0 and for
y ¥ W s(x) 5 Ri holds Wu(y) 5 W s(x sui) ¥ L. Hence, by continuity of the
stable and unstable foliations d(y, “ sRi) > r−0

2=: r0. In view of (MP2) a
rectangle of the form Ri−m−n · · · i0 completely ‘‘crosses’’ the rectangle Ri0––
i.e., Ri−m−n · · · i0 5 W s(xi0) ]”. Let z be a point of this intersection. Then
d(z, “ sRi0) > r0. But Rj−m · · · jn=f −n(Ri−m−n · · · i0) where jk=ik−n; −m [ k [ n.
Therefore for w=f −nz holds d(fnw, “ sR)=d(z, “ sRi0) > r0.

Step 3: Claim: There is an r1 > 0 such that if x ¥ Ri−m · · · in fulfills the
assertion in step 2 and y ¨ Ri−m · · · in then Bn

m(x, r1) 5 Bn
m(y, r1)=”.

We fix x ¥ Ri−m · · · in and y ¨ Ri−m · · · in. Then at least one of the points
v s=W s(x) 5 Wu(y) and vu=Wu(x) 5 W s(y) is not in Ri−m · · · in. Without loss
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of generality let it be vu. Then there is a point w ¥ Wu(x) 5 “ sRi−m · · · in with
d(fkx, fkw) < 2d(fkx, fky); −m [ k [ n. The latter inequality holds
because of the continuity of the invariant foliations and since fkx and fky
are close for −m [ k [ n. Let us assume that z ¥ Bn

m(x, r) 5 Bn
m(y, r) for

some r > 0. Then

d(fkx, fkw) < 2d(fkx, fky) [ 2d(fkz, fkx)+2d(fkz, fky) [ 4r

for −m [ k [ n. Since fkw ¥ “ sR; k \ 0 this inequality is impossible for
4r [ r0. So we can choose r1 :=r0/4.

Step 4: Claim: There is a constant C1 > 1 such that if x ¥ Ri−m · · · in
then Ri−m · · · in … Bn

m(x, C1r1).
Let C1 :=max1 [ k [ l diam(Rk) r −11 and x ¥ Ri−m · · · in. Then

Ri−m · · · in={z ¥ L : fkz ¥ Rik, −m [ k [ n}

… {z ¥ L : d(fkz, fkx) [ C1r1, −m [ k [ n}

=Bn
m(x, C1r1).

Step 5: Claim: If Ri−m · · · in 5 Rj−m · · · jn ]” and x ¥ Ri−m · · · in, y ¥ Rj−m · · · jn
then Bn

m(x, 3C1r1) ‡ Bn
m(y, r1).

Let z ¥ Bn
m(y, r1) and w ¥ Ri−m · · · in 5 Rj−m · · · jn. Then by step 4

d(fkz, fkx) [ d(fkz, fky)+d(fky, fkw)+d(fkw, fkx) [ r1+2C1r1

for −m [ k [ n. Hence, z ¥ Bn
m(x, 3C1r1).

Step 6: Now we are ready to prove the lemma. By step 1 we may
assume without loss of generality that 3C1r1 < e0 where e0 is from the
volume lemma of Bowen and Ruelle formulated as Theorem A.1 in the
Appendix. Let Ri−m · · · in be a rectangle. Then all rectangles Rj−m · · · jn which
have nonempty intersection with Ri−m · · · in are contained in the ball
Bn
m(x, 3C1r1) for some x ¥ Ri−m · · · in. To each of these rectangles Rj−m · · · jn there

is associated a Bowen ball Bn
m(yj, r1) with yj ¥ Rj−m · · · jn. In view of the claim

of step 4 all these Bowen balls are contained in Bn
m(x, 3C1r1) and by step 3

can be chosen to be mutually disjoint. Hence their number does not exceed
the ratio of their volumes. The volume lemma of Bowen and Ruelle
(Theorem A.1 in the Appendix) implies

ind Ri−m · · · in [
vol(Bn

m(x, 3C1r1))
supy ¥ Bnm(x, 3C1r1) vol(B

n
m(y, r1))

[ V(3C1r1, r1).
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Since the rectangle was arbitrarily chosen the assertion of the lemma
follows. L

Now we show that the distortion of the functions n s(x, r)=n sus(x, r)
and nu(x, r)=nuuu(x, r) is bounded on a Bowen ball of radius less then e0
where e0 is the constant from Theorem A.1.

Lemma 7.2. Let L be a basic set of an Axiom A C1+a diffeo-
morphism equipped with a Markov partition R and g ¥FK

h a strictly posi-
tive Hölder continuous function. For e0 > e > 0 there is a constant
N=N(e) such that for r > 0, m, k \ 0 and y ¥ Bk

m(x, e) 5 L

|n sg(x, r)−n sg(y, r)| < N(e) and |nug(x, r)−nug(y, r)| < N(e).

Proof. We are going to prove the first of the two inequalities. The
other is proved similarly.

Let y ¥ Bk
0(x, e) 5 L. By the local product property there is a point

z ¥ L with Wu(y) 5 W s(x)={z} and max{d(x, z), d(y, z)} < CŒe for some
CŒ > 0 independent of e and k. This and (A2) and (A3) yield that
d(f jx, f jz) [ CŒCl je and d(f jy, f jz) [ CŒCln−je for 0 [ j [ k. By the
Hölder continuity of g we have that

|g(f jx)−g(f jy)| [ |g(f jx)−g(f jz)|+|g(f jy)−g(f jz)|

[ K(CŒC(l je+ln−je))h

for 0 [ j [ k. Therefore

: C
k

j=0
g(f jx)− C

k

j=0
g(f jy) : [ C

k

j=0
K(CŒC(l je+ln−je))h

[ K(CŒC)h
1

1−(le)h
=: KŒ.

Hence, |n sg(x, r)−n sg(y, r)| [ K Œ
minx ¥ L g(x)

. Since Bk
m(x, e) … Bk

0(x, e) for all
k, m ¥N the above inequality implies the desired result. L

Letū=(u s, uu) ¥FK
h ×FK

h (L),r̄=(r s, ru) > (0, 0)andx ¥ Ri−ns(x, r̄ ) · · · inu(x, r̄ ).
Lemma 7.1 says that the cardinality of rectangles Rj−ns(x, r̄ ) · · · jnu(x, r̄ ) that inter-
sect Ri−ns(x, r̄ ) · · · inu(x, r̄ ) is bounded by the finite number ind R. As in step 4 in
the proof of Lemma 7.1 we may assume that 3C1r1 < e0 then repeating part
of step 5 we see that all these neighboring rectangles Rj−ns(x, r̄ ) · · · jnu(x, r̄ ) are
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contained in Bnu(x, r̄)
ns(x, r̄)(x, 3C1r1). By Lemma 7.2 each of these rectangles

Rj−ns(x, r̄ ) · · · jnu(x, r̄ ) contains at most l2N(3C1r1) rectangles from Rū, r̄. Therefore,

indū, r̄ R [ l2N(3C1r1) ind R <..

This completes the proof of Theorem 5.1.

7.2. Proof of Theorem 5.2

The proof in the case of repellers can be derived by obvious modifica-
tions of the proof of Theorem 5.1. The proof of the analogon of Lemma 7.1
can be considerably simplified if one notes that the Markov property
implies that fnRi0 · · · in=Ri0.

7.3. Proof of Corollary 5.4

We present the proof in the case of ū-dimensions. The proofs of the
other statements need only obvious modifications.

Let A ¥ SA and Z=q(Z).We are going to show that for ū ¥

FK
h (L)×FK

h (L) the equality dimū Z=dimū p q A holds.
For r > 0, e > 0 sufficiently small let Cr …1t [ r R(us, uu), (t, t) be a finite or

countable cover of Z. To each R ¥ Cr 5R(us, uu), (t, t) we can associate at most
indū R rectangles RŒ ¥R(us, uu), (t, t) that intersect R. We also note that for
RŒ ¥R(us, uu), (t, t)

|u s(RŒ)−u s(R)| < max
x ¥ L

u s(x) and |uu(RŒ)−uu(R)| < max
x ¥ L

uu(x)

holds. Hence to the cover Cr of Z we can associate a cover Ĉr of A with

C
C ¥ Ĉr

exp(−duu p q(C)−du s p q(C))

[ indū R exp(max
x, y ¥ L

u s(x)+uu(y)) C
R ¥ Cr

exp(−duu(R))−du s(R)).

This ensures that dimū Z \ dimū p qA. The reverse inequality is obvious.

APPENDIX

The proof of the main results was based on the following important
fact of Bowen and Ruelle (8) (see also ref. 7).
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Theorem A.1 [Bowen and Ruelle]. Let L be a basic set for an
Axiom A C1+a-diffeomorphism. There is a e0 > 0 and a function
V: (0, e0)×(0, e0) Q [1,.) such that for 0 < e, d < e0, all nonnegative
integers n and m, x ¥ L and y ¥ Bn

m(x, e)

V(e, d) −1 vol(Bn
m(y, d)) [ vol(Bn

m(x, e)) [ V(e, d) vol(Bn
m(y, d))

holds.
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